

Advanced users’
workshop:

Custom Backtester
Interface

by Tomasz Janeczko,
Amibroker.com

Custom backtester
interface (CBI) - what for?

For everything that is not possible to do
with standard backtester except....

making coffee
(feature not implemented, sorry)

Custom backtester
interface (CBI) - what for?

❙ adding your custom metrics position sizing
based on portfolio-level equity

❙ advanced scaling-in/-out based on portfolio
equity (for example rebalancing) and other run-
time stats

❙ customized rotational trading systems
❙ implementing custom formulas for slippage

control
❙ advanced systems using PF-level stats on bar-

by-bar basis to decide which trades to take

Purpose of this session
❚ to explain some basic concepts
❚ to show a couple of usage examples
❚ to answer questions that you may have
❚ it is NOT 1-hour programming course

Portolio backtest: 2 passes
❚ first pass

❙ collecting trade signals,
❙ ranking/sorting by position score

(your AFL formula is executed once for every
symbol under test)

❚ second pass
❙ actual backtest (simulation of trading on

historical data using signals collected in 1st pass)
(executed only once per backtest)

First backtester pass
(regular)

Second backtester pass

This is where custom backtester interface can
be used

❚ For each bar the following things happen:
❙ Top ranked entry signals are checked and

trades are entered (if funds are available)
❙ Exit/scale signals are matched against open

positions and executed
❙ Stops are applied and executed
❙ All portfolio-level statistics/metrics are updated

With CBI you can actually change every aspect of this pass

How to enable it ?

To enable custom
backtest, you can use
AA->

Settings,
Portfolio tab
(if you do so, custom

code will be applied to
ALL backtests)

How to enable it ?

...or you can enable it from the code:
SetOption("UseCustomBacktestProc", True);
or
SetCustomBacktestProc(

"C:\\MyPath\\MyCustomBacktest.afl");
(if you want to use use external file for it)

In this case custom backtest will be applied to
current formula only.

Where to enter CBT code if
it is enabled inside formula

To distinguish between normal run (phase 1)
and final backtest run (phase 2) you need to
use Status function:

SetCustomBacktestProc("");
if(Status("action") == actionPortfolio)
{

 ... YOUR CBT CODE (PHASE 2)HERE....
}
... YOUR REGULAR TRADING SYSTEM (PHASE 1)
HERE...

CBI - 3 programming levels

❚ high-level - the easiest (allows simple
implementation of custom metrics)

❚ medium-level (allows to modify signals,
query open positions - good for advanced
position sizing)

❚ low-level approach (the most complex)
- provides full control over entire backtest
process for advanced programmers only

CBI programming model

❚ Custom backtester interface uses so called
“object oriented programming”
methodology (a.k.a. OOP)

❚ Don’t be afraid - at basic level (only this
level is required to understand CBI) OOP
is fairly simple

OOP - object definition

❚ In computer science an object is self-
contained entity that encapsulates both
data (so called properties) and
procedures (so called methods) to
manipulate the data.

❚ Sounds difficult.? Maybe but it is
actually simple...

/wiki/Entity
/wiki/Information_hiding
/wiki/Data
/wiki/Data
/wiki/Procedure
/wiki/Procedure

OOP - simple example
Before we dig into objects used by CBI one “real-world”

example what object is and how to use:

❚ a PEN - in programming could be
represented as object having
❙ properties

❘ color, thickness

❙ methods that perform some actions
❘ DrawLine(x, y) for example

pen = CreatePen(); // object creation
pen.thickness = 2; // property modification
pen.DrawLine(30, 20); // method call

OOP vs functional
programming

Many old-time programmers are afraid about
OOP, while they used more or less the same
idea without actually realising that.

Example:
FILE HANDLE -> OBJECT - in every

programming language there is a concept of
file handle that all file functions (METHODS)
require to identify the file (OBJECT) on which
to operate.

CBI object hierarchy

CBI access to objects

❚ Backtester object is available directly
using GetBacktesterObject() AFL function.

❚ All other objects (Signal/Trade/Stats) are
accessible by calling appropriate methods
of backtester object

High level mode
❚ The simplest.
❚ Uses only two objects (Backtester and

Stats) and only two methods
(Backtest()/GetPerformanceStats())

❚ how does it work?
❙ We call default Backtest() procedure
❙ and after that we are collecting statistics to

calculate our own figures.

❚ what for?
❙ user-defined portfolio-level metrics

Ex 1: High Level - custom
metrics

❚ In the first example we will add simple
new metric to backtest/optimization
output:

Expectancy ($) =
%Winners * AvgProfit -
%Losers * AvgLoss

Ex 1: High level - custom
metrics - cont.

❚ SetCustomBacktestProc("");
/* Now custom-backtest procedure follows */
if(Status("action") == actionPortfolio)
{
bo = GetBacktesterObject();
bo.Backtest(); // run default backtest procedure
st = bo.GetPerformanceStats(0); // get stats for all trades
expectancy =
st.GetValue("WinnersAvgProfit")*st.GetValue("WinnersPercent")/100 +
st.GetValue("LosersAvgLoss")*st.GetValue("LosersPercent")/100;
// Here we add custom metric to backtest report
bo.AddCustomMetric("Expectancy ($)", expectancy);
}

Ex 1: High level - custom
metrics - results

Medium level
❚ Semi-advanced - uses all object classes
❚ how does it work?

❙ for each bar:
❘ we can modify signals, check/modify open positions,

retrieve per-trade statistics
❘ then we call default signal processing method

❚ what for?
❙ Advanced position sizing
❙ PF-level signal control (custom rotational trading)
❙ Trade-based metrics

Ex 2: Mid-level - pos. sizing
based on portfolio eq.
if(Status("action") == actionPortfolio)
{

bo = GetBacktesterObject();
bo.PreProcess();
for(bar = 0; bar < BarCount; bar++)

 {
 CurrentPortfolioEquity = bo.Equity;

 for(sig = bo.GetFirstSignal(bar); sig; sig = bo.GetNextSignal(bar))
 {
 if(CurrentPortfolioEquity > 50000) sig.PosSize = -20;
 if(CurrentPortfolioEquity > 60000) sig.PosSize = -16;
 if(CurrentPortfolioEquity > 80000) sig.PosSize = -12;
 }
 bo.ProcessTradeSignals(bar);
 }

 bo.PostProcess();
}

Ex 3: Mid-level - excl. top-N
signals in rotational mode

SetOption("UseCustomBacktestProc", True);
ExcludeTopN = 1; // how many top positions to exclude
if(Status("action") == actionPortfolio)
{
 bo = GetBacktesterObject();
 bo.PreProcess();
 for(bar = 0; bar < BarCount; bar++)
 {
 Cnt = 0;
 for(sig = bo.GetFirstSignal(bar); sig; sig = bo.GetNextSignal(bar))
 {
 if(Cnt < ExcludeTopN) sig.Price = -1; // exclude
 Cnt++;
 }
 bo.ProcessTradeSignals(bar);
 }
 bo.PostProcess();
}
EnableRotationalTrading(True);
SetOption("MaxOpenPositions", 5); SetOption("WorstRankHeld", 10);
PositionSize = -20; PositionScore= 1/RSI(14);

Low level mode
❚ The most complex but most powerful
❚ how does it work?

❙ for each bar
❘ we can check signals/open pos/PF-stats to decide what

trades to enter/exit/scale
❘ we can call EnterTrade/ExitTrade/ScaleTrade for using

any parameters we want, we are not limited by signals
❘ we need to handle stops and update portfolio statistics

❚ what for?
❙ rarely used, only for very advanced pf systems

Ex 4: Mid/Low-level -
rebalancing
if(Status("action") == actionPortfolio)
{
 bo = GetBacktesterObject();
 bo.PreProcess(); // Initialize backtester
 for(bar=0; bar<BarCount; bar++)
 {
 bo.ProcessTradeSignals(bar); CurEquity = bo.Equity;
 for(pos = bo.GetFirstOpenPos(); pos; pos = bo.GetNextOpenPos())
 {
 posval = pos.GetPositionValue();
 diff = posval - 0.05 * CurEquity; // rebalance to 5% of pf equity
 price = pos.GetPrice(bar, "O");
 if(diff != 0 AND abs(diff) > 0.005 * CurEquity

 AND abs(diff) > price)
 {
 bo.ScaleTrade(bar, pos.Symbol, diff < 0, price, abs(diff));
 }
 }
 }
 bo.PostProcess(); // Finalize backtester
}

Some questions I collected
before (1)

Q: Rebalancing sample: can the weight also
be an array, so the weights become
dynamic?

A: Yes it can. Instead of this line:
diff = posval - 0.05 * CurEquity;

Use this:
diff = posval - Foreign("~TickerWithWeights", "C") *

CurEquity;

Some questions I collected
before (2)

Q: How can I access percentage position size to make
leverage adjustment for expectancy per $100 invested

A: You need to store original percent position size from
appropriate Signal object (if you are using regular mode). To
do so, you can use SetVar function inside loop using mid-
level

for(sig = bo.GetFirstSignal(bar);
 sig;
 sig = bo.GetNextSignal(bar))
 VarSet("OrigSize" + sig.Symbol, sig.PosSize);

Later on you would need to read it back when you iterate through
trades.
Because of complexity I will post code sample a bit later to the KB.

Some questions I collected
before (3)

Q: I have problem with using ATC in CB
procedure together with
atcFlagEnableInPortfolio

A: Yes there is a problem in current beta,
but it will be fixed next week

Some questions I collected
before (4)

❚ Q: Is there already a way to automatically save
the "~~~EQUITY" to a different choosen name
after a backtest? If not, would you consider
introducing this possibility?

❚ A: Currently there are two ways:
❙ harder: writing equity to file and using OLE to re-

import it at the end of CB procedure.
❙ easier: using ATC and atcFlagEnableInPortfolio (but

as mentioned earlier it requires fix to the beta)

Some questions I collected
before (5)

❚ Q: Will there be a link between the
account manager and the portfolio-
BT/CBT

❚ A: At some point in the future yes. First
version of new account manager that will
appear within months probably will not
have it.

Any more questions?

❚ Please feel free to ask any questions...

Thank You

For more information visit:
http://www.amibroker.com

